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SUMMARY:
The frequency domain modal analysis of the aeroelastic behavior of a structure subjected to gusty winds requires the
determination of the eigenvalues of the aeroelastic system and the associated mode shapes for all subcritical wind
speeds. These frequencies and modes are obtained at a chosen wind speed by solving the eigenvalue problem, which
has to be iteratively solved because of the frequency dependence of the stiffness matrix. Classical solution schemes
appear to be poorly efficient in this context as they rely on algorithms optimized for constant matrices and discard a
consequent part of their outputs. This paper presents an alternative algorithm to perform the solution of the nonlinear
generalized eigenvalue problem, under the form of an arc-length continuation process. The advantages offered by
this method rely on the consideration of one mode at a time, which makes it more suitable for frequency dependent
matrices as one single frequency at a time is involved in the system. Furthermore, it allows for a very systematic
establishment of the modal basis by preventing any modal swapping between two sampled wind speeds.
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1. INTRODUCTION
Typical linear aeroelastic problems are of the form

Msq̈(t)+Csq̇(t)+Ksq(t)−
1
2

ρU2Q(k)q(t) = 0 (1)

where Ms, Cs, Ks are the structural mass, damping and stiffness matrices, Q(k) is the complex
generalized aerodynamic force matrix, k = ωb/U is the reduced frequency, ω is the frequency
in rad/s, b is a characteristic length and q(t) is the matrix of modal coordinates. Equation (1)
is a time-frequency domain equation and several different approaches have been proposed for its
eigensolution, such as the p− k method (Rodden and Bellinger, 1982) or the g method (Chen,
2000). As the airspeed varies, two or more eigenvalues can approach each other or even intersect,
such that mode tracking can become problematic. Reduced frequency lining-up (Rodden, 1987) or
predictor-corrector techniques have been applied to mitigate this problem but their effectiveness is
strongly dependent on the airspeed increment used. Manual sorting of the eigenvalues is the last
resort to ensure proper mode tracking. The method presented here offers a convenient and efficient
alternative to prevent mode swapping.
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2. DESCRIPTION OF THE METHOD
The proposed method consists in an arc-length continuation process to solve mode by mode the
generalized eigenvalue problem. Focusing exclusively on a chosen mode i, it reads

−λ
2
i M(ωi,U)φ i + iλiC(ωi,U)φ i +K(ωi,U)φ i = 0 (2)

where M(ω,U), C(ω,U) and K(ω,U) refer respectively to the matrices of mass, damping and
stiffness. Each of these may be expressed as the sum of a constant and system related contribution
and another variable part introducing the aeroelastic effects such that M(ω,U) = Ms+Mae(ω,U),
C(ω,U) = Cs +Cae(ω,U) and K(ω,U) = Ks +Kae(ω,U). For example, following the modified
p− k formulation (Chen, 2000),

Mae(ω,U) = 0, Cae(ω,U) =− 1
2k

ρU2
ℑ(Q(k)), Kae(ω,U) =−1

2
ρU2

ℜ(Q(k))

If n refers to the number of nodes, this problem stages 4n real unknowns for given air speed U ,
respectively 2n for the real and imaginary parts of λi, and 2n for the real and imaginary parts of the
complex eigenvectors φ i. Therefore, this equation is supplemented by a normalization condition
of the eigenvectors to close the system of equation

ℜ{φ i} ·ℜ{φ i}= 1 and ℑ{φ i} ·ℑ{φ i}= 1 i = 1, . . . , n. (3)

Equations (2) and (3) form a set of nonlinear algebraic equations and no longer an eigenvalue
problem. It may be expressed under the form f(x,U) = 0, with xT =

[
λi, φ

T ]T . Equation (3)
with non-zero RHS prevents convergence to the trivial solution φ i = 0. Introducing D , the 2n+
3 dimensional space defined by the reals unknowns, —namely air speed U , eigenvalues λi and
eigenvectors φ i—, and starting from a known point p0 ∈ D solution of f(x,U) = 0, the arc length
method consists in finding the intersection of the objective function f(x,U) with the hypersphere
of radius r, defined in D and centered on p0. The situation is schematically illustrated in 2D in
Figure 1. The equation of the hypersphere reads

r2 =

(
U −U0

Uref

)2

+

(
ℜ(λ )−ℜ(λ0)

ℜ(λref)

)2

+

(
ℑ(λ )−ℑ(λ0)

ℑ(λref)

)2

+∑
k

[
ℜ(φk)−ℜ(φk,0)

]2
+
[
ℑ(φk)−ℑ(φk,0)

]2
. (4)

where the quantities with index ref are scaling parameters, but can be taken equal to 1 and adapted
if necessary. Linearizing f(x,U) around a point p0 = (x0,U0) ∈ D with x0, and U0 such that
f(x0,U0) = 0 and solving the so formed system for x gives

x ≈ x0 −J−1
x (x0,U0) [f(x0,U0)+JU(x0,U0)(U −U0)] p ∼ p0 (5)

with Jx(x,U) =
∂ f
∂x

(x,U) and JU(x,U) =
∂ f
∂U

(x,U). Introducing (5) in the system formed by (2)
and (3) provides a quadratic equation in U

(1+bT ST Sb)U2 −2(U0 −aT ST Sb)U +U2
0 − (dR Uref)

2 +aT ST Sa = 0 (6)
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Figure 1. Illustration of the method in a 2D space.

with a = x− x0 − J−1
x (x,U)

[
f(x,U)− JU(x,U)U

]
, b = −J−1

x (x,U)Ju(x,U) and S is a diagonal
rescaling matrix containing the reference coefficients ℜ(λref), ℑ(λref). This equation is easily
solved analytically to obtain the two intersections with the sphere whose radius r is fixed by the
user. Among the two possible intersections, only the largest is of interest, as the process is initiated
from wind-off conditions and progresses towards critical airspeed. At any time in the process, the
next point is necessarily located at higher flight speed than the previous one. Rejecting systemat-
ically the lowest root prevents thus any fortuitous change in direction. The new flight speed U is
now used to evaluate a new x which is in turn used to get new U etc until convergence is reached.
Several iterations may be necessary to make sure that the intersection is close enough to the actual
curve, depending on the tolerance fixed by the user. The discretization of the curve may be indi-
rectly regulated by the choice of the sphere radius. This choice affects only the space between two
consecutive points, but not the accuracy of the points themselves which depends exclusively on the
fixed tolerance.

The presented method will be illustrated on two examples: a pitch/plunge model of a bridge deck
and a multi-mode aeroelastic model of a plane wing.

3. CONCLUSION
The presented method solves the generalized eigenvalue problem for a chosen mode, and deter-
mines both the complex eigenvalues and the complex eigenvectors. As the eigenvalue problem is
solved mode by mode, the mode swapping occurring when solving such systems with two modes
having —even locally— very close eigenvalues is prevented. The semi-analytical solution for U
provides also a powerful control of the progress of the algorithm: no return back in the airspeed
is possible. For this reason, the method offers a very systematic way to determine the variation of
eigenfrequencies and damping ratios with airspeed without affecting the numerical performances



that well-established methods are known to provide. Additional examples of applications and
comparisons with existing techniques will be given in the full paper.
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